

The Impact of Malnutrition and Insufficient Dietary Intake on Healthcare-Associated Infections: Evidence

DR.SSA MARTINA TURCO

Adverse outcomes in healthcare:

Increased morbidity and mortality.

Prolonged hospital length of stay.

Higher healthcare costs.

Malnutrition is the primary cause of immunodeficiency worldwide, making individuals more susceptible to infections.

20% and 50% of hospitalized patients), the identification of malnutrition is often time-consuming and rarely integrated into daily practice, and its management is frequently overlooked in HCAI reduction strategies(1)

¹ Yeo, K.-J., Kim, I.-H., Kim, Y., et al. *Prevalence of Malnutrition in Hospitalized Patients: A Multicenter Cross-sectional Study*. **Journal of Korean Medical Science**, 33(2), e10, 2018. https://doi.org/10.3346/jkms.2018.33.e10

Population: 1689 hospitalised patients

1091 eligible for measurement of nutritional risk (NRS-2002)

1024 eligible for measurement of energy intake (110% Harris-Benedict formula)

RESEARCH ARTICLE

Healthcare-Associated Infections Are Associated with Insufficient Dietary Intake: An Observational Cross-Sectional Study

Ronan Thibault^{1©}, Anne-Marie Makhlouf^{1©}, Michel P. Kossovsky², Jimison lavindrasana³, Marinette Chikhi¹, Rodolphe Meyer⁴, Didier Pittet⁵, Walter Zingg⁵, Claude Pichard¹*

Nutrition Unit, Geneva University Hospital, Geneva, Switzerland, 2 Rehabilitation and Geriatrics, Geneva University Hospital, Geneva, Switzerland, 3 Business Intelligence Division, Geneva University Hospital, Geneva, Switzerland, 4 Department of Informatics, Geneva University Hospital, Geneva, Switzerland,
 Infection Control Programme, Geneva University Hospital, Geneva, Switzerland

Nutritional risk 30.1%

Nutritional Risk Screening (NRS 2002)

Nutritional status

None O

Mild .

- Weight loss > 5 % in 3 months or
- 50 75 % of the normal food intake in the last week

Moderate ..

- Weight loss > 5 % in 2 months or
- BMI 18.5 20.5 kg/m2 and reduced general conditions or
- 25 50 % of the normal food intake in the last week

Severe •••

- Weight loss > 5 % in 1 month (>15% in 3 months) or
- BMI < 18.5 kg/m2 and reduced general conditions or
- 0 25% of the normal food intake in the last week

Severity of the disease (stress metabolism)

None O

Mild •

Hip fracture, chronic disease especially with complications, e.g. liver cirrhosis, COPD, diabetes, cancer, chronic hemodialysis

Moderate ..

e.g. stroke, hematologic malignancy, severe pneumonia, extended abdominal surgery

Severe • • •

e.g. head traumas, hematopoietic stem cell transplantation, intensive care patients (APACHE-II > 10)

Advanced age ● Age ≥ 70 years

0 - 2 points

Repeat screening weekly.

3-7 points

Patient is at nutritional risk. Nutritional care plan should be set up.

Prevalence of HCAI 6.8%

Other infections included cardiovascular system infection, eye, ear, nose, throat or mouth infection, reproductive tract infection, and skin and soft tissue infection

HCAI	
Urinary tract infection	24 (30.4)
Lower respiratory tract infection, including pneumonia	18 (22.8)
Surgical site infection	15 (18.9)
Bloodstream infection	9 (11.4)
Other infection types ±	9 (11.4)
Gastrointestinal system infection	3 (3.8)

Patients with HCAI were more likely identified with decreased energy intake (i.e. ≤ 70% of predicted energy needs)

The proportion of patients at nutritional risk was no significantly different between patients with and without HCAI (35.6% vs.29.7%, P = 0.28)

Measured energy intake ≤ 70% of predicted energy needs (odds ratio: 2.26; 95% CI: 1.24 to 4.11, P = 0.008) and moderate severity of the disease (odds ratio: 3.38; 95% CI: 1.49 to 7.68, P = 0.004) were associated with HCAI in the multivariate analysis.

Measured energy intake ≤ 70% of predicted energy needs is associated with HCAI in hospitalised patients. This suggests that insufficient dietary intake could be a risk factor of HCAI, without excluding reverse causality.

Food for thought. Malnutrition risk associated with increased risk of healthcareassociated infection

F. Fitzpatrick $\overset{\circ}{\sim}$ a,b $\overset{\boxtimes}{\boxtimes}$ · M. Skally a · C. O'Hanlon c · M. Foley a · J. Houlihan a · L. Gaughan d · O. Smith c · B. Moore c · S. Cunneen c · E. Sweeney c · B. Dinesh a · K. O'Connell a · E. Smyth a · H. Humphreys a,b · K. Burns a,e

Score

Background:

Infection and malnutrition interconnected. UK and Irish guidelines recommend the **Malnutrition Universal Screening** Tool (MUST) for nutritional risk screening. Patients with a MUST score of ≥2 are considered at high risk of malnutrition and referral for nutritional is assessment recommended.

1. Body mass index (BMI) (kg/m ³)	2. Unplanned weight loss in past 3–6 months (kg)	3. Acutely ill plus has been or likely no nutritional intake for >5 days		
 >20: score 0 18.5-20: score 1 	• <5%: score 0 • 5–10%: score 1	If yes: score 2		
• <18.5: score 2	• >10%: score 2			

Action

Low risk: routine clinical care
 Medium risk: observe/document dietary and fluid intake ×3 days
 ≥2 High risk: treat, refer for nutritional assessment

Population: 240 patients

Prevalence of HCAI: 10.4 (N=25)

MUST Score >2 (hight risk of malnutrition): 26% (N=63) HCAI types included: pneumonia (N = 12), surgical site infection (SSI) (N = 4), clinical sepsis (N = 3), urinary tract infection (UTI), gastrointestinal tract (GI) infection (excluding *Clostridium difficile* infection) (N = 2 each category respectively), bloodstream infection (BSI), ear—nose—throat/oral cavity infection and osteomyelitis (N = 1 each category respectively)

Patient demographics, prevalence of malnutrition risk, healthcare-associated infection (HCAI) risk factors and HCAI, and covariates of HCAI

Variable	Patients with no HCAI (N = 215)	Patients with HCAI (N = 25)	Total (N = 240)	Univariate analysis	.	Bivariate analysis	
				χ²	P-value	OR (95% CI)	P-value
Mean age (years) (range)	69 (17–97)	62 (26–93)	68 (19–97)				
Male	111 (52%)	16 (64%)	127 (53%)	1.4	0.24		
Consultant specialty							
Medical	151 (70%)	14 (56%)	165 (69%)	23			
Surgical	64 (30%)	11 (44%)	75 (31%)	2.1	0.15		
MUST ≥2 ^a	49 (23%)	14 (56%)	63 (26%)	12.8	<0.001	4.3 (1.7–11.2)	<0.001
Surgery since admission	31 (14%)	12 (48%)	43 (18%)	17.2	<0.001	5.5 (2.1–14.3)	<0.001
End of life or life-limiting prognosis (McCabe score)	85 (40%)	14 (56%)	99 (41%)	2.5	0.11		
Prescribed antimicrobials b	88 (41%)	25 (100%)	113 (47%)	31.4	<0.001	Not calculated	
Device(s) present							
Central vascular catheter	21 (10%)	13 (52%)	34 (14%)	32.9	<0.001	10.0 (3.6-27.2)	<0.001
Peripheral vascular catheter	105 (49%)	15 (60%)	120 (50%)	1.1	0.29		
Urethral catheter	36 (17%)	15 (60%)	51 (21%)	25	<0.001	7.5 (2.8–20.0)	<0.001

	Patients		HCAI Total	Univariate analysis		Bivariate analysis	
	with no HCAI (N = 215)	Patients with HCAI (N = 25)		χ²	P-value	OR (95% CI)	P-value
MUST ≥2	49 (23%)	14 (56%)	63 (26%)	12.8	<0.001	4.3 (1.7–11.2)	<0.001
Surgery since admission	31 (14%)	12 (48%)	43 (18%)	17.2	<0.001	5.5 (2.1– 14.3)	<0.001
Device(s) present							
Central vascular catheter	21 (10%)	13 (52%)	34 (14%)	32.9	<0.001	10.0 (3.6– 27.2)	<0.001
Peripheral vascular catheter	105 (49%)	15 (60%)	120 (50%)	1.1	0.29		
Urethral catheter	36 (17%)	15 (60%)	51 (21%)	25	<0.001	7.5 (2.8– 20.0)	<0.001

Patients with HCAI:

- have had surgery (odds ratio (OR): 5.5; confidence interval (CI): 2.1– 14.3; P < 0.001)</p>
- a central vascular catheter (OR: 10.0; CI: 3.6–27.2; P < 0.001)
- a urinary catheter *in situ* (OR: 7.5; CI: 2.8–20.0; *P* < 0.001).
- High risk of malnutrition (OR: 4.3; CI: 1.7– 11.2; P < 0.001

Undernutrition and weight loss have been consistently found to increase mortality risk, at all ages and across care settings

- Integrating nutritional screening, followed by targeted assessment and appropriate nutritional intervention, has clear benefits for patients.
- Addressing malnutrition would also have economic benefits for the healthcare system

m.turco@asl2.liguria.it

Chirurgia Generale ad indirizzo
Oncologico
Direttore: Prof. Raffaele
Galleano